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Abstract: Dual view transport of intensity phase microscopy is adopted to quantitatively 
study the regulation of adenosine triphosphate (ATP) on cellular mechanics. It extracts cell 
phases in real time from simultaneously captured under- and over-focus images. By 
computing the root-mean-square phase and correlation time, it is found that the cellular 
fluctuation amplitude and speed increased with ATP compared to those with ATP depletion. 
Besides, when adenylyl-imidodiphosphate (AMP-PNP) was introduced, it competed with 
ATP to bind to the ATP binding site, and the cellular fluctuation amplitude and speed 
decreased. The results prove that ATP is a factor in the regulation of cellular mechanics. To 
our best knowledge, it is the first time that the dual view transport of intensity phase 
microscopy was used for live cell phase imaging and analysis. Our work not only provides 
direct measurements on cellular fluctuations to study ATP regulation on cellular mechanics, 
but it also proves that our proposed dual view transport of intensity phase microscopy can be 
well used, especially in quantitative phase imaging of live cells in biological and medical 
applications. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

It is known that cells constantly sense and adapt to their biochemical environments by 
adjusting its mechanical properties [1] which play an important role in cell spreading [2], cell 
adhesion [3], motility [4,5] and proliferation rates [6], as well as more fundamental biological 
processes, such as the lineage specification of stem cells, control of cell growth and apoptosis 
[7,8]. Mechanical properties of cells are metabolically regulated to control the static and 
dynamic cellular characteristics. Not only intracellular but also extracellular ATP can affect 
cell proliferation, migration, differentiation, contraction and relaxation, wound healing, 
inflammation and cancer [2]. The process of chemosensing of extracellular ATP by cells 
involves a multistep cascade [9,10] that results in information exchange through physically 
contacting cells or through diffusing signaling molecules [11]. One important mechanical 
element of the cell affected by ATP is its plasma membrane, a dynamic fluid lipid bilayer that 
is not static but actively regulated. For example, it has been shown that ATP is crucial in 
maintaining the biconcave shape of the red blood cell membrane [12], and can increase the 
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dynamic membrane fluctuations of red blood cells [13,14]. However, the regulatory 
mechanism of ATP in cell membranes is mainly investigated for red blood cells [15,16], how 
ATP regulates mechanical properties of the cell membrane of other cell types still remains 
elusive. 

Cellular fluctuation which is often induced by cellular membrane vibration can quantify 
the mechanics of live cells. To obtain the direct measurements on the cellular fluctuations of 
live cells, different methods have been proposed including the point dark field microscopy 
[12], the reflection interference contrast microscopy [13] and the optical tweezer based 
interferometric method [14], etc. Compared to these conventional techniques, quantitative 
phase microscopy [17–21] is a better choice. This technique not only obtains high-contrast 
images of label-free samples, but also provides cellular parameters in details; therefore, it 
especially suits for cellular fluctuation measurements. There are many quantitative phase 
microscopic methods based on different principles but all focusing on sample phase 
extraction. Ptychography based techniques including ptychographic iterative engine [22–24] 
and Fourier ptychographic microscopy [25–27] can provide cell phases with high accuracy 
and resolution. However, due to the indispensable time-consuming iteration, ptychography 
can hardly be used for real-time live cell imaging. Interferometry based techniques such as 
digital holographic microscopy [28–32] and quantitative interferometric microscopy [33–40] 
can extract cell phases even from single-shot fringe pattern, indicating its real-time 
quantitative phase imaging capability. While reference beam and coherent illumination are 
required, it is difficult to integrate the interferometry with the widely used commercial 
microscopes. Besides these methods, transport of intensity phase microscopy [41–45] is a 
potential tool for live cell imaging and analysis, because it can be easily integrated with 
commercial microscopes only with simple modification, and the sample phases can be 
retrieved rapidly without time-consuming iteration or phase unwrapping. Though multi-focal 
intensities are required, different methods were proposed to capture the multi-focal intensities 
simultaneously. Relying on the chromatic aberration, Waller group designed the single-shot 
color transport of intensity phase microscopy [46], while it ignores the sample dispersion. 
Besides, based on the field of view (FoV) division, Waller et al. [47], Yang et al. [48] and Yu 
et al. [49] proposed single-shot transport of intensity phase microscopy using volume 
holography, grating and spatial light modulator, respectively. Li et al. [50] and Zuo et al. [51] 
also designed mirror-prism based single-shot transport of intensity phase microscopy. Using 
these methods, multi-focal intensities can be simultaneously collected at a single imaging 
plane. Unfortunately, the imaging FoVs of these methods are obviously limited, and these 
systems are often complicated. In order to simplify the system, as well as to maintain the 
large FoV, we have proposed dual view transport of intensity phase microscopy [52]. first, 
both under- and over-focus images can be simultaneously captured by setting two identical 
image recorders on the binocular of the commercial microscope. Then after FoV correction 
on these simultaneously captured multi-focal images and in-focus plane determination [53], 
the in-focus image can be approximated to the average of under- and over-focus images 
[54,55]. Finally, the phase can be extracted from multi-focal images by solving the Poisson 
equation. Compared to the classical ptychography and interferometry, dual view transport of 
intensity phase microscopy not only has fast processing speed skipping time-consuming 
iteration and phase unwrapping, but also can be easily integrated with commercial 
microscopes, more importantly, it can realize real-time cell phase measurements for cellular 
fluctuation detection. Therefore, in this paper, we used the dual view transport of intensity 
phase microscopy to detect the cellular fluctuations. Cellular fluctuations of both F81 and 
BHK21 cells with ATP and with ATP depletion as well as by introducing adenylyl-
imidodiphosphate (AMP-PNP) were measured in order to study the function of ATP on 
cellular mechanics. Moreover, both the root-mean-square phase and the correlation time were 
computed to analyze cellular fluctuation amplitude and speed, respectively. It is found that 
cellular fluctuation amplitude and speed increased with ATP compared to those with ATP 
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depletion. Besides, when AMP-PNP was introduced which competed with ATP to bind to the 
ATP binding site, the cellular fluctuation amplitude and speed decreased. The results prove 
that ATP is a factor to regulate cellular mechanics. To our best knowledge, it is the first time 
that the dual view transport of intensity phase microscopy is successfully used for live cell 
phase imaging and analysis, and it is believed the work not only provides a reference for 
understanding the ATP function on cellular fluctuations, but also proposes a tool for 
measuring cellular dynamics in real time. 

2. Real-time cell phase imaging and cellular fluctuation analysis method 

2.1 Real-time cell phase imaging using dual view transport of intensity phase 
microscopy 

The dual view transport of intensity phase microscopy was adopted for real-time cell phase 
measurements. Since high coherence of the illumination is required for accurate phase 
retrieval in transport of intensity phase microscopy, an interference filter (Daheng Optics, 
China) with the central wavelength of 633 nm and the full width at half maximum of 10 nm 
was inserted into the light source system for high temporal coherence; besides, the condenser 
aperture of the Kohler illumination was set as ∼40% of the objective aperture for high spatial 
coherence. Two identical CMOS cameras (JAI, Japan) were set at the binocular of a 
commercial microscope (Eclipse Ti, Nikon, Japan), and their focal planes were set at different 
planes with the interval of 3 mm by brass spacer rings (Edmund Optics, US) as shown in Fig. 
1(A). Unfortunately, there was inevitable FoV mismatch between these simultaneously 
captured multi-focal images in Fig. 1(B), which could hardly be corrected by manually 
adjusting CMOS cameras. In order to solve the problem, we designed the phase correlation 
based digital FoV correction method [53] to recognize and compensate the FoV mismatch. 
Via computing the cross power spectrum in frequency domain, the rotation, scale and 
translation between the simultaneously captured multi-focal images can be accurately 
determined; and even two images are not captured in the same focal plane, the adopted phase 
correlation based digital FoV correction method can still provide high-accurate FoV 
correction. The phase correlation based digital FoV correction method was both proved by 
numerical simulations and practical experiments in our previous work [53]. Additionally, in 
our experiments, 3-mm brass spacer rings were used to simultaneously obtain the multi-focal 
images, therefore, the focal distance between the simultaneously captured multi-focal images 
was 3 mm. Next, by adjusting the micro-objective of the inverted microscope, different multi-
focal images can be captured. With the phase correlation based digital FoV correction 
method, the captured multi-focal images can be corrected with the same FoV. It is known that 
the image in the central place of these two imaging planes can be approximated to the average 
of the corrected multi-focal images. By adjusting the micro-objective, a series of multi-focal 
images as well as the computed central images were obtained. By evaluating these computed 
central images using in-focus criteria, the in-focus central image was determined, and the 
micro-objective was set at the corresponding position. In this condition, the captured images 
are the under- and over-focus images with the focal distance of 3 mm as indicated in Fig. 
1(C). After FoV correction and under- and over-focus image determination, the in-focus 
image in Fig. 1(D) could be approximated to the average of the FoV corrected under- and 
over-focus intensities, as Iin = (Iunder + Iover)/2, in which Iunder, Iin and Iover indicate the under-, 
in- and over-focus intensities, respectively. Then the quantitative phase distribution φ in Fig. 
1(D) was retrieved by solving the Poisson equation using the fast Fourier transform (FFT) 
based phase retrieval method. 
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DMEM with glucose as well as the DMEM without glucose. With the certificated dual view 
transport of intensity phase microscopic system, these cell phases were retrieved during the 
observation period of 6 s with the acquisition rate of 20 fps. It is known that the cell can be 
recognized according to the retrieved phase in Fig. 2, therefore the cell occupied pixels were 
determined according to Fig. 4(A). We compared the cell occupied pixels during the period of 
6 s from totally 40 cells (10 cells in each condition) as shown in Fig. 4(B), the changed pixel 
numbers were always less than 5% of the total cell occupied pixel numbers in all conditions. 
Since the cell random movements during the observation time were not obvious in our 
experiments, the cell movements were not considered in the following measurements. 

Moreover, the dynamic phases of different F81 and BHK21 cells cultured in the same 
condition but in different times were also checked. Phase dynamics during 6 s of totally 12 
cells were measured in two times with the interval of ~5 min, and their relative root-mean-
square phase changes and correlation time changes were listed in Fig. 4(C). According to the 
rather low relative changes listed in Fig. 4(C), there were no statistically significant 
differences between the root-mean-square phase and the correlation time in two different 
periods, indicating that the cellular fluctuations of these two kinds of cells were stable. 

 

Fig. 4. Quantitative certification on the dual view transport of intensity phase microscopic 
system using cells. (A) cell phases and corresponding cell occupied pixels during the 
observation time; (B) statistical cell occupied pixel changes in different conditions; (C) relative 
root-mean-square phase changes and correlation time changes in different conditions. The 
color bars in (A) indicate the phase with the unit of rad, and the white bar in (A) indicates 30 
μm. 

After the above certifications, F81 cells were first cultured in the DMEM with high 
glucose (Gibco, US), so that enough ATP could be generated. The observation period and the 
acquisition rate still kept as 6 s and 20 fps, respectively. Figures 5(A) and 6(A) list the 
retrieved phases of representative 4 of the total 120 cells. The phase dynamics in this 
observation period reflect the cellular fluctuations with ATP. Next, the DMEM with high 
glucose was replaced by the DMEM without glucose (Gibco, US), and more than half of the 
ATP in the cells was depleted after 10 min [63]. After 10 min of the DMEM replacement, the 
under- and over-focus intensities were simultaneously recorded to recover the real-time phase 
distributions still for the same FoV, and the retrieved phase distributions of these 4 cells are 
still listed in Figs. 5(B) and 6(B). The observation time and the acquisition rate were the same 
as before, and the phase dynamics in this observation period represent the cellular fluctuations 
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with ATP depletion. Finally, ATP (Sigma-Aldrich, US) and glucose (Sinopharm, China) were 
added in the DMEM without glucose, respectively. After 10 min of ATP or glucose adding, 
the under- and over-focus intensities were simultaneously recorded to recover the real-time 
phase distributions as shown in Figs. 5(C) and 6(C). The only difference between Figs. 5 and 
6 is that in Fig. 5, ATP was added; while in Fig. 6, glucose was added in the final step. The 
phase dynamics in this observation period indicate the cellular fluctuations with ATP. Though 
Figs. 5/6(A)-5/6(C) only list 4 representative cells, in order to statistically evaluate the 
cellular fluctuations, total 60 F81 cells were measured with the experimental condition in Fig. 
5; and another 60 cells were measured with the experimental condition in Fig. 6. 
Additionally, to quantitatively and statistically evaluate the cellular fluctuations, average root-
mean-square phase and correlation time of all the measured cells were computed in Figs. 
5/6(D), 5/6(E) and 5/6(F) corresponding to the conditions in Figs. 5/6(A), 5/6(B) and 5/6(C). 
The statistical root-mean-square phase and correlation time were calculated as 0.0690 ± 
0.0075 rad, 0.1607 ± 0.0227 s/0.0705 ± 0.0074 rad, 0.1585 ± 0.0217 s; 0.0615 ± 0.0066 rad, 
0.1780 ± 0.0141 s/0.0617 ± 0.0066 rad, 0.1821 ± 0.0193 s; and 0.0702 ± 0.0067 rad, 0.1688 ± 
0.0175 s/0.0678 ± 0.0070 rad, 0.1686 ± 0.0159 s in Figs. 5/6(D), 5/6(E) and 5/6(F), 
respectively. Figures 5/6(G) show the statistical comparisons on both the root-mean-square 
phase and the correlation time. According to Student's t test, there are no statistically 
significant differences between the root-mean-square phase and the correlation time in Figs. 
5/6(D) and 5/6(F), indicating that cellular fluctuations in these conditions are close both 
reflecting the conditions with ATP. While there are statistically significant differences 
between the root-mean-square phase and the correlation time in Figs. 5/6(E) and 5/6(D/F) 
(t<0.01). The statistical root-mean-square phase with ATP is obviously higher than that with 
ATP depletion, and the statistical correlation time with ATP is also obviously lower than that 
with ATP depletion, indicating that cells performed increased fluctuation amplitude and speed 
with ATP than with ATP depletion. Additionally, linear discriminant analysis was also 
adopted for analyzing the cell fluctuations with and without ATP. With linear discriminant 
analysis, the two classes are as far apart as possible after classification, and the samples in the 
same class are as aggregated as possible [64]. Figures 5/6(G) show the classification results, 
when the cells were cultured with ATP, most of them were distributed upon the classification 
line, while when the cells were cultured without ATP, most of them were distributed below 
the classification line. 
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In practical measurements using dual view transport of intensity phase microscopy, real-
time phase distributions of both F81 and BHK21 cells in different conditions with ATP and 
with ATP depletion as well as with AMP-PNP introduction were retrieved. According to 
quantitative cellular fluctuation analysis, it shows that cellular fluctuation amplitude and 
speed became increased with higher root-mean-square phase and shorter correlation time in 
the conditions with ATP than those with ATP depletion or with AMP-PNP introduction, 
proving that ATP is a factor to regulate cellular mechanics. 

4. Conclusion 

In order to study the ATP induced cellular fluctuations, real-time cell phase distributions 
reflecting the cellular fluctuations were retrieved using our proposed dual view transport of 
intensity phase microscopy. Furthermore, both the root-mean-square phase and the correlation 
time of cellular fluctuations were computed to quantitatively characterize the cellular 
fluctuation amplitude and speed, respectively. According to the direct cell phase 
measurements and the detailed cellular fluctuation analysis, it is found that the cellular 
fluctuation amplitude and speed of both F81 and BHK21 cells increased in the condition with 
ATP compared to that with ATP depletion. Besides, when AMP-PNP was introduced which 
competed with ATP to bind to the ATP binding site, cellular fluctuation amplitude and speed 
of both cells decreased according to the lower root-mean-square phase and longer correlation 
time. The result prove that ATP is a factor to regulate cellular mechanics. To our best 
knowledge, it is the first time that our proposed dual view transport of intensity phase 
microscopy was successfully used in live cell phase imaging and analysis. The work not only 
proves that the dual view transport of intensity phase microscopy can provide real-time cell 
phase imaging for various studies in biological observations and medical diagnostics, but also 
provides direct measurements on ATP induced cellular fluctuations as a reference to further 
study on the regulation of ATP on cell mechanics. 
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